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Basic Model of an Op Amp
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Terminals
▶ Two inputs:

Non-inverting input v+
Inverting input v−

▶ One output: vo
▶ Two voltage supplies: VHIGH and

VLOW

Characteristics
▶ The op-amp is a linear amplifier on

the difference ∆v = v+ − v−, so
vo = K∆v

▶ The gain K is very high
▶ The input resistance is very high

(rin > 1MΩ)



Ideal Linear Amplification

Slope = K

∆v

vo

The output voltage vo is linearly proportional to ∆v = v+ − v−



Practical Linear Amplification

Slope = K

VHIGH

VLOW

∆v

vo

In practice, the output voltage is limited by the voltages supplied
to the op-amp, so vo cannot rise above VHIGH or fall below VLOW .



Practical Linear Amplification

The previous picture gives a poor sense of scale for the vo vs ∆v
relationship. Since the gain K is actually very large, a more
accurate graph would look like this:

VHIGH

VLOW

∆v

vo



Remarks

▶ The Linear Region is the range from
VLOW

K
to

VHIGH

K
.

▶ The region where the voltage is limited by the supplies is
called the Saturation Region

Examples

Suppose VLOW = −15V,VHIGH = 15V,K = 100 000.
Therefore, the linear region is between −0.15mV and 0.15mV.

∆v vo Region

0.01mV 1V Linear
0.02mV 2V Linear
0.5V 15V Saturation
−7V −15V Saturation



Use Case 1: Comparator
A comparator is a device that outputs HIGH when the input
voltage is positive and LOW when the input is negative.

To construct this device with an op-amp, connect v− to ground
(i.e. to 0V) and connect the input signal to v+. Now
∆v = vin − 0.
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Use Case 2: Inverting Comparator

Identical to a regular comparator except when a positive vin should
produce a low voltage.

Connect v+ to ground and connect the input signal to the
inverting input v−. Now ∆v = −vin.
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Use Case 3: Comparator with offset
Suppose you want to compare a signal against a non-zero
threshold (for example, a threshold of 2.5V could be used to
determine if a 5V digital signal is 1 or 0).

Connect your signal to v+ and bias to v− to set the threshold.
Now ∆v = vin − Vbias .
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Comparator Remarks

▶ Comparators are said to operate in their saturation region
since the desired behaviour involves saturating the output.

▶ For input voltages very close to the threshold, the op-amp will
be in its linear region, so the output will not be VHIGH or
VLOW as expected.



Op-Amps with Feedback

So far, all of the circuits have been an “open-loop” configuration,
which means that the inputs are independent of the output.

When feedback is used, the output is connected (possibly through
components like resistors or capacitors) back to one of the inputs.
This greatly expands the functionality of the op-amp.

In the following circuits, we will assume that the op-amp is
operating in its linear region, although it would be possible to
design these circuits such that the output saturates for some
inputs.

Because of this assumption, the VHIGH and VLOW supply voltages
have been omitted from further circuits diagrams, although these
connections would still be necessary for a physical circuit.



Voltage Follower

The simplest op-amp feedback circuit is a voltage follower, which
is a device whose output matches its input.

To create this device, connect the input signal to v+ and connect
the output back to v−.

vin
+

−

vo



Voltage Follower

To see why this is a voltage follower, use the op-amp amplification
equation and the fact that v− is tied to vo .

vo = K∆v

vo = K (v+ − v−)

vo = K (vin − vo)

vo + Kvo = Kvin

vo =
K

K + 1
vin

Since K is very large,
K

K + 1
≈ 1 so vo = vi and thus the output

voltage matches the input voltage.



Positive and Negative Feedback

The choice to connect vo to the inverting input v− seems arbitrary.
We could have connected it to v+, then similar math would show
that vo = K

K−1vin ≈ vin, which also appears to be a voltage
follower.

Consider the stability of these two configurations. Suppose a small
deviation causes vo to increase slightly above vin.

▶ If vo is connected to v+ and vin to v−, the deviation will make
∆v positive. This change will be amplified at vo , causing vo
to increase further, leading to runaway positive feedback until
vo = VHIGH .

▶ If vo is connected to v− and vin to v+, the positive deviation
in vo will make ∆v negative, so the amplification will induce a
change in vo that is opposite to the initial positive deviation.
This negative feedback will settle at vo = K

K+1vin ≈ vin



Positive and Negative Feedback

Therefore, a positive-feedback voltage follower configuration is
impractical since is succumbs to runaway feedback.

A negative-feedback voltage follower is stable and will settle when
vo = vin.

We can now create some more interesting op-amp circuits using
feedback.



Amplifier

The gain K of the op-amp is too large for most amplification
purposes, and it is susceptible to changes in temperature, humidity,
and other degradation.

Consider the following op-amp circuit using a resistor circuit to
connect vo to v−.
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+

−

Rf
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vo



Amplifier

To analyze this circuit, use the fact that the internal resistance of
the op-amp rin is very large (this resistor is not shown, see the
second slide). This means that there is effectively no current
flowing into either v+ or v−.

Combining this fact about input current with KCL, we find that

v− =
Ri

Ri + Rf
vo

Since the feedback is provided to the negative terminal, this
system will be stable, and we can solve for the vo vs vin
relationship as we did for the voltage follower.



vo = K∆v

vo = K

(
vin −

Ri

Ri + Rf
vo

)
vo

(
1 + K

Ri

Ri + Rf

)
= Kvin

vo =
K

1 + K Ri
Ri+Rf

vin

vo =
1

1
K + Ri

Ri+Rf

vin

Since 1
K ≈ 0

vo =
1

0 + Ri
Ri+Rf

vin =
Ri + Rf

Ri
vin =

(
1 +

Rf

Ri

)
vin



Amplifier

Therefore, this circuit produces an input-output relation of

vo =

(
1 +

Rf

Ri

)
vin

which is a amplifier with a voltage gain of
(
1 + Rf

Ri

)
. Since Ri and

Rf are external components, we are free to choose them as desired
to set the gain of this amplifier.

Most importantly, the gain of this amplifier circuit is independent
of the gain K of the op-amp component.



Amplifier

Refer to the amplifier circuit shown previously.

Example

What is the voltage gain of an amplifier with Rf = 10 kΩ and
Ri = 10 kΩ?

gain = 1 +
Rf

Ri
= 1 +

10 kΩ

10 kΩ
= 2

Example

If Ri is fixed at 47 kΩ, what value should Rf have to create a
voltage gain of 20?

gain = 1 +
Rf

Ri
=⇒ 20 = 1 +

Rf

47 kΩ
=⇒ Rf = 893 kΩ



Further Analysis of the Amplifier Circuit

What is the value of v− in the amplifier circuit?

Recall the relation v− = Ri
Ri+Rf

vo and use the equation for vo from
vin.

v− =
Ri

Ri + Rf
vo

v− =
Ri

Ri + Rf

(
1 +

Rf

Ri

)
vin

v− =
Ri

Ri + Rf

(
Ri + Rf

Ri

)
vin

v− = vin

Therefore, the circuit “settles” in such a way that the voltage at
v− matches the voltage at vin = v+.



This result that v− = v+ seems to be a contradiction, since then
∆v = 0 and thus vo = K∆v = 0, contrary to our derivation
showing that this circuit is an amplifier.

However, this equality arises because of our approximation of
1
K = 0 when deriving the amplifier voltage gain. Watch what
happens when this approximation is not performed.



Recall the v− vs vo relation and the equation just before the
approximation was made:

v− =
Ri

Ri + Rf
vo vo =

1
1
K + Ri

Ri+Rf

vin

Combining these gives:

v− =

(
Ri

Ri + Rf

)(
1

1
K + Ri

Ri+Rf

)
vin

v− =
Ri

Ri+Rf
K + Ri

vin

v− =
1

1+
Rf
Ri

K + 1

vin

v− =
1

gain
K + 1

vin



Therefore, we find that v− is not exactly equal to v+ = vin, but is
rather slightly scaled down since 1

gain
K

+1
< 1. Now consider ∆v :

∆v = v+ − v−

= vin −
1

gain
K + 1

vin

=

(
1− 1

gain
K + 1

)
vin

=
gain
K + 1− 1
gain
K + 1

vin

=
gain

gain + K
vin

Since the voltage gain is usually much less than K , the fraction
gain

gain+K is very small, which agrees with our approximation ∆v ≈ 0.



Given this expression for ∆v , use the op-amp amplification
equation to find vo

vo = K∆v = K
gain

gain + K
vin =

K · gain
gain + K

vin =
gain

gain
K + 1

vin ≈ gain

1
vin

And so the circuit does act like an amplifier with the expected
gain, so long as the circuit gain is sufficiently less than K .



Remarks on Assumptions

Notice that we did not make any assumptions or idealizations when
calculating the voltage follower or amplifier behaviours, besides the
known fact that K is very large. However, in the process of this
analysis, the result that v− ≈ v+ appeared very naturally.

This becomes an important result that greatly simplifies
negative-feedback circuit analysis:

Negative Feedback Assumption

If an op-amp is configured with negative feedback, then vo will
settle at the voltage which causes v− to equal v+.

This assumption should not be made in circuits with positive
feedback (recall the unstable voltage follower) or in circuits with
no feedback (like the comparators).



Amplifier

Let’s re-analyze the amplifier circuit. Since there is negative
feedback, the v+ = v− assumption can be made.

vin
+

−

Rf

Ri

vo v− =
Ri

Ri + Rf
vo

Since v− = v+, and v+ = vin

vin =
Ri

Ri + Rf
vo

vo =
Ri + Rf

Ri
vin =

(
1 +

Rf

Ri

)
vin

And so using the assumption leads to the same result as before but
with far less calculations.



Differential Amplifier Example

Derive an equation for vo
as a function of the two
inputs in this circuit:

vin,1

Ri

−

+

Rf

vo

Rf

Ri

vin,2

Since the input resistance of the op-amp is high,
there is no current flow into either terminal of the
op-amp. Thus, KCL can be used to find:

v− =
Ri

Rf + Ri
vo +

Rf

Rf + Ri
vin,1

v+ =
Rf

Rf + Ri
vin,2

Since there is negative feedback, we can set
v− = v+, then isolate for vo .

Rf

Rf + Ri
vin,2 =

Ri

Rf + Ri
vo +

Rf

Rf + Ri
vin,1

Rf vin,2 = Rivo + Rf vin,1

vo =
Rf

Ri

(
vin,2 − vin,1

)
This circuit is called a “Differential Amplifier” because it amplifies the
difference between the two inputs. The gain can be set using different
values for Rf and Ri .



Transfer Functions

In electronics and control systems, it is common to use a transfer
function to describe the relationship between the input and
output. The transfer function is defined as vo

vin
.

A generic system with transfer function G is represented with a
block diagram as follows

Gvin vo

where vo = Gvin

For example, the transfer function of a voltage follower is G = 1
and the transfer function of the amplifier is G = 1 + Rf

Ri
.

A comparator does not have a meaningful transfer function since
the ratio of vo to vin is not constant.



Transfer Functions and the s-domain

For op-amp circuits involving time-dependent components like
capacitors and inductors, the output is no longer a multiple of the
input, at least not when viewing the signals as functions of time.

The problem is reconciled by working in the s-domain, which is a
generalization of the phasor domain studied in 2E04.

When working in the s-domain, the behaviours of capacitors,
inductors, and resistors are nicely represented by algebraic
expressions in terms of a new s variable.

s is a variable and does not mean “seconds” or any other unit.



Impedances

A component’s impedance is the ratio of the the voltage across
its terminals to the current passing through the components, with

these ratios considered in the s-domain, that is Z =
V (s)

I (s)
. The

units of impedance are ohms.

A resistor with resistance R in ohms has impedance R.

A capacitor with capacitance C in farads has impedance
1

Cs
.

An inductor with inductance L in henries has impedance Ls.

When given a circuit involving capacitors and inductors, the overall
impedance can be solved by replacing all components with their
respective impedances, treating them like resistors, and using
regular circuit analysis techniques.



Impedance Example

What is the overall impedance between point A and point B?

A

50Ω 200mH

B

10mF

First, replace all components with their impedances.

A

R = 50 Ls = 0.2s

B

1
Cs = 1

0.01s = 100
s



Impedance Example

The top branch is a serial combination, so take the sum of the
impedances of the resistor and inductor: Ztop = 50 + 0.2s

The top and bottom branches are a parallel combination, so use
the regular parallel rules to find the total impedance.

ZAB =

(
1

Ztop
+

1

Zbottom

)−1

=

(
1

50 + 0.2s
+

1
100
s

)−1

=

(
100 + 50s + 0.2s2

5000 + 200s

)−1

=
200s + 5000

0.2s2 + 50s + 100

Therefore, the impedance between A and B is 200s+5000
0.2s2+50s+100

ohms.



Transfer Function Example

Find the transfer function for the
following passive high pass filter.

vin
R

vo

L

To solve, apply KCL at the vo
node using the impedances of
both elements.

vo − vin
R

+
vo − 0

Ls
= 0

Lsvo − Lsvin + Rvo = 0

vo(Ls + R) = Lsvin

vo
vin

=
Ls

Ls + R

Therefore, the transfer function is G (s) =
vo(s)

vin(s)
=

Ls

Ls + R



Op-Amp Transfer Function

The following circuit is an active high pass filter.

vin
R1

−

+

R2

vo

L

Determine its transfer function. Since there is negative feedback,
the v− = v+ assumption can be made. Notice that v+ is tied to
ground, so v+ = v− = 0.



Op-Amp Transfer Function

Use KCL at v− and the fact that no current flows into the
inverting input to relate vo to vin.

v− − vin
R1

+
v− − vo(
1
R2

+ 1
Ls

)−1
= 0

Setting v− = 0

−vin
R1

−
(

1

R2
+

1

Ls

)
vo = 0

Ls + R2

R2Ls
vo = −vin

R1

vo
vin

= − R2Ls

R1Ls + R1R2

vo
vin

= −R2

R1

Ls

Ls + R2



Op-Amp Transfer Function

The transfer function of this high pass filter circuit is

G (s) = −R2

R1

Ls

Ls + R2

Notice that by setting R2 to the same value as R in the passive
high-pass filter, then the same Ls

Ls+R term is present in both
transfer functions.

The difference with the op-amp filter is that it inverts the signal
(due to the negative sign in the transfer function) and its
amplitude is scaled by R2

R1
.



Benefits of an Active Filter

This scaling factor highlights one benefit of an active filter: it can
add energy to the system. By choosing an R2

R1
ratio greater than 1,

the output signal is an amplified. In contrast, the output amplitude
of the passive high pass filter cannot exceed the input amplitude.

In a situation that requires detecting high frequency signals that
have a small amplitude, the active filter will provide both
functionalities.



Bandwidth

An important input signal is the sinusoid:

vin(t) = sin (ωt)

Most components and circuits will experience some power loss for
high frequency inputs.

The bandwidth ωBW is defined to be the maximum sinusoid
frequency for which the output power is no less than 1

2 of the input
power.

For example, most op-amps have a bandwidth greater than 10 kHz,
meaning that frequencies less than this will be processed without
“too much” power loss.



Cutoff Frequency

For a filter circuit, the cutoff frequency is similar to bandwidth as
it represents the first frequency to have its power attenuated by 1

2 .
Whether this is a minimum or maximum frequency depends on the
type of filter.

Note that for active filters, like the op-amp high pass filter shown
above, there may be some amplification factor affecting the
output. In this case, the cutoff frequency is typically assumed to
be the frequency at which the voltage has dropped by 1√

2
relative

to the maximum voltage output.

For example, if the amplification on the active low pass filter is 20,
then a 1V DC signal will be passed to an output of 20V. The
cutoff frequency will be the frequency such that a 1V sinusoid
produces a 1√

2
· 20V = 14.14V output.



Calculating Bandwidth

Given the transfer function G (s) of a circuit, it is easy to find its
bandwidth / cutoff frequency.

1. Since G (s) is a ratio of output to input voltages, set
|G (s)| = 1√

2
. (If necessary, accommodate any amplification

requirements here, as discussed on the previous slide).

2. Sub in s = jωBW where j =
√
−1. This corresponds to an

input of sin (ωBW t)

3. Solve for ωBW using regular complex number arithmetic.



Cutoff Frequency Example

Determine the cutoff frequency for the passive high pass filter
shown earlier. Let R = 2200Ω and L = 200mH.

Recall the transfer function was G (s) = Ls
Ls+R = 0.2s

0.2s+2200 .

Now follow the steps from the previous slide

|G (s)| = 1√
2∣∣∣∣ 0.2jωBW

0.2jωBW + 2200

∣∣∣∣ = 1√
2

|0.2jωBW |
|0.2jωBW + 2200|

=
1√
2

0.2ωBW√
(0.2ωBW )2 + 22002

=
1√
2



Squaring both sides

(0.2ωBW )2

(0.2ωBW )2 + 22002
=

1

2

Rearranging

2 · (0.2ωBW )2 = (0.2ωBW )2 + 22002

(0.2)2ωBW
2 − 22002 = 0

Using the quadratic formula (or other methods)

ωBW = 11 kHz

Therefore, the cutoff frequency is 11 kHz. Since this is a high-pass
filter, all input frequencies below 11 kHz will produce an output
voltage less than 1√

2
of the input voltage.



The bel unit

When dealing with electronics, a linear gain scale is often too
coarse to completely understand a circuit since it compresses all
low gains into a small region. By passing to a logarithmic scale,
these details are preserved.

The gain of a system is the ratio Pout
Pin

. This ratio can alternatively
be conveyed by taking its logarithm.

While this log value is technically unitless, we append the unit bel
[B] to emphasize that this gain is expressed as the log of the power
ratio, not the ratio itself.

Gain =
Pout

Pin
= log10

(
Pout

Pin

)
[B]



The bel unit

Example

A certain filter attenuates an input power by 50×. What is the
gain as a ratio and in bels?

We are told Pout =
1
50Pin, so the gain ratio is 1

50 .
To express in bels, take its log

Gain = log10

(
1

50

)
= −1.699B



The bel unit

Example

An audio amplifier has a gain of 2 B. If the input power is 7W,
what is the output power?

Power Gain = log10

(
Pout

Pin

)
2B = log10

(
Pout

7W

)
102 =

Pout

7W
700W = Pout

The output power is 700W.



The decibel scale

The last two examples show that very large and very small power
gains correspond to relatively small values when expressed in bels.
For this reason, we typically express gain in decibels [dB], which is
1
10 of a bel.

Given a power gain ratio, its gain in decibels is calculated as

Power Gain = 10 log10

(
Pout

Pin

)
[dB]

For example, 2 B = 20 dB and −1.699B = −16.99 dB.



The decibel scale

In most cases, we find ourselves working with voltage gain rather
than power gain. Using the relationship

Pout

Pin
=

(
Vout

Vin

)2

and the logarithm laws, we get an expression for power gain in
decibels, in terms of voltage gain

Gain = 10 log10

((
Vout

Vin

)2
)
[dB] = 20 log10

(
Vout

Vin

)
[dB]



The decibel scale

Example

What is the gain, in decibels, of a filter at its cutoff frequency?

Using the power definition of cutoff,
Pout

Pin
=

1

2
:

Gain = 10 log10

(
Pout

Pin

)
= 10 log10

(
1

2

)
= −3.01 dB

Using the voltage definition of cutoff,
Vout

Vin
=

1√
2
:

Gain = 20 log10

(
Vout

Vin

)
= 20 log10

(
1√
2

)
= −3.01 dB

As would be expected, both methods produce the same result.



The decibel scale

Remark

The cutoff frequency is sometimes called the “−3 dB frequency”
since it corresponds to a gain of roughly −3 dB.

Additionally, every −3 dB change corresponds to another halving of
the power gain.



Common Mode Gain

One of the initial assumptions about op-amps was that it amplifies
the difference between its two inputs, that is

vo = K (v+ − v−)

An imperfection with real op-amps is common mode gain, which is
an effect where some multiple of the average value of the two
inputs is added to the output signal. This means that the output
voltage is actually

vo = K (v+ − v−) + Kcm

(
v+ + v−

2

)
where Kcm is the common mode gain factor. It may be positive
or negative and is typically quite small compared to K , but some
scenarios require its consideration.



Common Mode Rejection Ratio

To express how much the op-amp output is affected by common
mode gain, we can consider the common mode rejection ratio
CMRR, defined as

CMRR =
K

|Kcm|
This indicates how much greater the differential gain K is
compared to the common mode gain Kcm. The absolute value on
Kcm ensures this value is positive.

Example

If K = 200 000 and Kcm = −6.5, then CMRR = 200 000
|−6.5| = 30 769.2



Common Mode Rejection Ratio

Since the CMRR is typically a large value, and it represents a ratio
of voltages (roughly the differential voltage to the common mode
voltage), it is often expressed in units of decibels. Use the voltage
decibel gain equation to express CMRR as

CMRR = 20 log10

(
K

|Kcm|

)
[dB]


