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The trefoil coloured with S3



p-colourings

Let p be prime. A mod-p colouring of a knot is a labelling of the
arcs with the integers 0, ..., p — 1 such that

2x—y—z=0 modp
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Figure 1: A 5-colouring of 4,



Wirtinger Presentation

The Wirtinger presentation of 71(K) has the arcs as generators
and crossings as relations.
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Group Colourings

Definition
Let G be a group. A G-colouring of a knot is a labelling of the
arcs with elements of G which satisfies the Wirtinger relation at

each crossing.
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S,-colouring
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S;-colouring
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Theorem (Perko 1975)

A knot is S3-colourable if and only if it is S4-colourable.



Trivial Colourings

Labelling every arc with the same g € G trivially satisfies the
Wirtinger relations. We typically ignore these.

We would not say that the Conway knot is Qg-colourable.



Trivial Colourings

We require that the labels generate G, i.e. the labelling is a
surjective homomorphism of 71(K) onto G.
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This is not an S4 colouring, even though all of the labels are in S4.



Dihedral Colouring

The dihedral group D, is the symmetries of the regular n-sided
polygon. It has order |D,| = 2n and a finite presentation

Wiy = <r,s | s?=r"=1,sr* = r_k5>
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Figure 2: Ds-colouring of 44.
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Fox-n Colourings

Ds-colouring of 44 mod-5 colouring of 44

The mod-p colourings are dihedral group colourings in disguise!
The function i — sr’ takes a mod-p label to a D, label.

“=0 mod p" is replaced by rP = 1.



Application: Ts3

The (5, 3) torus knot has determinant det(T53) = 1, so it is not
mod-p colourable for any prime p.
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Application: Ts3

Ts,3 has a non-trivial colouring with As, the alternating
permutations on 5 letters.
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. .
Application: Ts3
K
# Blake Freer, 2024
# https://qithudb.com/BlakeFreer
from itertools import product

from sympy.combinatorics import Permutation, PermutationGroup
from sympy.combinatorics.named_groups import AlternatingGroup

GROUP = AlternatingGroup(5)

def try_solve(x0, x4, x8):
x1 = ("x4) * x0 * x4
x5 = ("x8) * x4 * x8
x2 = ("x8) * x1 * x8
x9 = ("x2) * x8 * x2
x6 = ("x2) * x5 * x2
x3 = ("x6) * x2 * x6
x7 = ("x0) * x6 * x0
assert x0 == ("x6) * x9 * x6, "Inconsistent at x0"
assert x4 == ("x0) * x3 * x0, "Inconsistent at x4"
assert x8 == ("x4) * x7 * x4, "Inconsistent at x8"

solution = [x0, x1, x2, x3, x4, x5, x6, x7, x8, x9]
assert PermutationGroup(*solution).equals(GROUP), "Doesn't generate."

return solution



Application: Ts3

def solve_conj_class(conj: set[Permutation]):
solutions = []
for x0, x4, x8 in product(conj, repeat=3):
try:
solutions.append(try_solve(x0, x4, x8))
except AssertionError:
pass
return solutions

for cls in GROUP.conjugacy_classes():
solutions = solve_conj_class(cls)
print (
f"Found {len(solutions)} colourings with the conjugacy class of {list(cls)[0]}."
)

if solutionms:
print("One example is:")
for idx, p in enumerate(solutions[0]):
print (f"x{idx} = {p}")
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