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Introduction

The strength of an invariant for distinguishing knots is related to the number of unique values which is can
assume. Invariants with a smaller range are inherently weaker. For example, the “tricolourability” invariant
only separates knots into 2 classes, and the unknotting number is limited to positive integers, lacking the
resolution to distinguish many knots.

A more powerful invariant can be created by extracting a group structure from a knot. Groups can
become very complicated, granting us the ability to differentiate more knots by leveraging the extensive
theorems from abstract algebra.

The groups can become so big that we will instead study surjective homomorphisms of the knot group
onto simpler groups. This mapping can be described by “colouring” (i.e. labelling) the arcs of a knot
diagram with group elements according to some relations. This “group colouring” is a generalization of
tricolourability and mod p-colourings.

Let’s start with a brief construction of the fundamental group of a knot.

1 The Fundamental Group of a Knot

We will define an algebraic group for a knot. As an invariant, properties of this group can be used to study
knots, and more importantly differentiate them. This group will consist of loops which may or may not “loop
around” parts of the knot, and the relations between these loops will define the structure of our group.

1.1 Loops and Homotopies

A loop is a continuous function γ : [0, 1] → R3 \K which starts and ends at the same point p = γ(0) = γ(1).
Exluding the knot K ⊂ R3 from the loop’s range means that it must go around the knot without intersecting
it. The +t progression induces an orientation for the loop.

Consider two loops with the same basepoint p. If there is a continous deformation from one loop to
another, such that every intermediate function is a loop with basepoint p, then we say the loops are homo-
topic. To retain the structure of our knot, it is important that the the deformation’s intermediate loops
remain in R3\K. The homotopy class [γ] is the set of all loops which are homotopic to a loop γ. Homotopy
is clearly an equivalence relation on the set of loops with the same basepoint.

In Figure 1, γ1a and γ1b are in the same homotopy class. The loop γ2 is not homotopic to the others
since it wraps around K twice and in the opposite direction.

Remark. The space R3 \K is path connected, so any loop from basepoint p1 can be expressed as a loop
from p2 by prepending and appending the path from p2 to p1. Therefore, we will not concern ourselves with
the specific basepoint p and will assume that it has been fixed.

1.2 The Fundamental Group

Two loops with the same basepoint can be concantenated to form a new loop. More formally, define

γ1γ2 =

{
γ1(2t) 0 ≤ t ≤ 1

2

γ2(2t− 1) 1
2 ≤ t ≤ 1
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Figure 1: Three loops in R3 \K with basepoint p.

This product is a proper loop with the same basepoint as its constituents. We now define a group using this
operation.

Definition 1.1. The fundamental group π1(K) of a knot K consists of the set of homotopy classes of
loops in R3 \K. The group operation is concatenation of loops, the identity is the constant loop γe(t) = p,
and the inverse of γ(t) is γ̄(t) = γ(1− t).

The fundamental group satisfies the group axioms and is well defined with respect to the representative
loop elements of each homotopy class.

Theorem 1.1. The fundamental group is a knot invariant.

Proof. Two knotsK1 andK2 in R3 are equivalent if there is a continuous function F takingK1 toK2 without
causing the knot to pass through itself. By deforming the whole space, this takes a loop γ ∈ π1(R3 \K1; p)
to a loop F (γ) ∈ π1(R3 \K2;F (p)). ■

This group can be exceedingly complicated, even for simple knots. We can begin to understand it by
investigating the relations between loops near crossings. Consider an oriented diagram for a knot K and
revert to the 3D knot by “lifting” each over-arc along the z-axis. Pick a point p high above the knot in the
+z direction and consider loops from p around the arcs at this crossing.

To each arc x we identify the element of π1(K) given by the class of loops which wrap around x once in
the positive direction (point your right thumb along the oriented arc and your fingers will curl in the positive
loop direction).

Example. Figure 2 shows a positive cross where the overstrand, incoming and outgoing understrands have
been labelled x, y and z respectively. [γ1] is represented by the group element x−1 and [γ2] by y2

Loops around the overstrand are homotopic as they can be “slid over” the crossing with no issue. In
contrast, loops around either understrand arc are not generally homotopic as any deformation is blocked by
the overstrand.
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[γ1] ∼= x−1

[γ2] ∼= y2

Figure 2

1.3 The Wirtinger Presentation

What relations can we expect between these group elements? If we loop around three consecutive “ends” of
the crossing arcs, then the composed loop is homotopic to one around the fourth arc, as shown in Figure 3.

x

y

z

x−1
y

x
x
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z

x

y

z

z

Figure 3: A homotopy from x−1yx to z.

In particular, for a positive crossing labelled as above, we have the relation x−1yx = z. The relation is
xyx−1 = z at a negative crossing. See Figure 4.

So far, we have identified an element of the group π1(K) to each arc in the diagram and have found a
relation induced by each crossing. A theorem of Wirtinger asserts that this is a finite presentation of the
fundamental group.

Theorem 1.2 (Wirtinger Presentation). The fundamental group of a knot K in R3 has a presentation given
by

π1(K) = ⟨x1, . . . , xg | r1, . . . , rn⟩

Where {xi} are the arcs in an oriented diagram for K and each relator ri is a word in {xi} in the form of
Figure 4.

Example. The fundamental group of the right-handed trefoil (Figure 5) has the Wirtinger presentation

π1(31) =
〈
x, y, z | x−1yx = z, y−1zy = x, z−1xz = y

〉
This presentation can be simplified using the third relator to express z in terms of x, y.

π1(31) =
〈
x, y | y−1(x−1yx)y = x, (x−1yx)−1x(x−1yx) = y

〉
= ⟨x, y | xyx = yxy⟩
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z = x−1yx z = xyx−1

Figure 4: The Wirtinger Relations
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r1 : x−1yx = z

r2 : y−1zy = x

r3 : z−1xz = y

Figure 5: The Wirtinger Presentation of π1(31)

2 Group Colourings

In Section 1, we constructed the Wirtinger presentation of the fundamental group of a knot. This presentation
lets us work with arcs and crossings in a knot diagram rather than loops in 3D space.

The fundamental group of even the simplest knot 31 is infinite and non-abelian, and the complexity will
only grow for knots with more crossings. We cannot hope to simplify, let alone identify, the fundamental
groups of a general knot.

A common theme surrounding knot invariants is the tradeoff between identifying power and computa-
tional complexity. Instead of studying the entire group, we will consider other groups which can be used to
relabel the arcs of a knot diagram while respecting the Wirtinger relations.

2.1 Consistent Labellings

Definition 2.1. Let K be a knot and G be a group (not necessarily the fundamental group of K). A
labelling of the arcs in an oriented diagram for K using elements of G is said to be consistent if it satisfies
the Figure 4 relations at each crossing.

Example. The trefoil can be labelled consistently with the symmetric group S3 using the elements x = (1 2),
y = (1 3) and z = (2 3).

Example. For any knot K and group G, labelling all arcs with the same element g ∈ G is consistent since
we trivially have g−1gg = g at each crossing.

Theorem 2.1. If a diagram of K can be consistently labelled with a group G, then any diagram for K can
also be labelled consistently with G.
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Proof. We will show that consistent labellings are undisturbed by Reidemeister moves.
The R1 case is simple - labelling both arcs with g after the move is consistent. For the reverse R1 move,

the two arcs must already be labelled identically since the relatioin g−1hg = g implies h = g.

g g

g g

g

g

h

h

g

g

h

h

ghg−1

Figure 6: Consistency across R1 and R2 moves.

For the R2 move, if all strands are labelled identically then a similar mono-labelling will hold after the
move. It is only interesting when the strands are labelled differently.

To be consistent at the (negative) upper crossing, we must label the middle arc ghg−1. We verify that
this is consistent with the (positive) lower crossing:

g−1(ghg−1)g = (g−1g)h(g−1g) = h

Applying this reasoning in reverse shows that it is not possible to consistently label the two h arcs with
different group elements, so the reverse R2 proof also follows from this diagram.

The R3 cases are presented in Figure 5.4 of [1]. ■

Lemma 2.2. If an oriented diagram of K can be labelled consistently with G, then the reverse oriented
diagram can also be labelled as such.

Proof. (Theorem 1 in §5 of [1]) Label the arcs in the reverse diagram with the inverse of each label in the
original diagram (Figure 7). This new labelling is consistent since the new crossing relation is algebraically
equivalent to the original relation.

x−1yx = z ⇐⇒ xz−1x−1 = y−1

Notice that the incoming strand y is the outgoing strand after the reversal. ■

x

y

z
x−1

y−1

z−1

K K reversed

Figure 7
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Combining Theorem 2.1 and Theorem 2.2 means that the consistent labellings with some group is an
invariant of the unoriented knot.

Lemma 2.3. If a knot is consistently labelled with an abelian group, then all arcs are labelled with the same
group element.

Proof. In an abelian group, the Wirtinger relation collapses to

g−1kg = h =⇒ g−1gk = h =⇒ k = h

Thus, arc labels cannot change over a crossing, so all arcs must be labelled identically. ■

Theorem 2.4. The labels in a consistent labelling are in the same conjugacy class of G.

Proof. Index the arcs in the diagram sequentially (i.e. the incoming and outgoing understrands at each
crossing are xi and xi+1, see fig. 12 for such an indexing).

The Wirtinger relations state that xi+1 = y−1xiy where y is the overstrand, so xi+1 and xi are conjugate.
Conjugacy is an equivalence relation. In particular, it is transitive.

x1 = y−1x0y x2 = z−1x1z =⇒ x2 = (yz)−1x0(yz)

A knot has a single strand, so xi must be conjugate to all other xj . ■

2.2 Group Colourings

The previous section showed that consistent labellings of a knot with G form an invariant. The immediate
question is: Which groups can and should be used to label a knot?

An earlier example demonstrated that a knot K can be consistently labelled using a single element of
any group G, but this trivial labelling is a mere algebraic artifact. We wish to study deeper representations
of π1(K) by requiring a stronger labelling.

Definition 2.2. For a group G, a G-colouring of a knot K is a consistent labelling of K with a generating
subset of G.

By requiring that the labels can generate the entire group, a G-colouring represents a true relation
between the structure of π1(K) and G.

Example. The trefoil is both S3 and S4 colourable.

(1 2)

(2 3)
(1 3)

Figure 8: S3-colouring of the trefoil.

(1 2 3 4)

(1 2 4 3) (1 3 2 4)

Figure 9: S4-colouring of the trefoil.

Let’s verify the Wirtinger relation at the circled crossings.

Figure 8 (1 2)−1(1 3)(1 2) = (1 2 3)(1 2) = (2 3)

Figure 9 (1 2 3 4)−1(1 3 2 4)(1 2 3 4) = (1)(2 3 4)(1 2 3 4) = (1 2 4 3)
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While Figure 8 is also a consistent labelling with elements of S4, the three elements do not generate the
whole group, so a different labelling is needed to show that the knot is S4-colourable.

Remark. S3 and S4 are special: a knot is S3-colourable if and only if it is S4-colourable. See [4].

Theorem 2.5. A G-colouring for a knot K defines a surjective homomorphism between π1(K) and G.

Proof. Given a G-colouring for K, define a map φ : π1(K) → G which takes each generator xi to its label
gi. Extend this map over the rest of π1(K) by mapping any word in the generators {xi} to a word in the
corresponding labels {gi}.

φ(xixjxk) = φ(xi)φ(xj)φ(xk)

The labels {gi} generate G, so for all g ∈ G, we can write g = gn1
gn2

· · · gnk
where gni

are labels in the
colouring. The definition of φ provides (at least) one element xni

7→ gni
, so

φ(xn1
xn2

· · ·xnk
) = gn1

gn2
· · · gnk

= g

This is true for all g ∈ G, so the map is surjective.
The map φ is a homomorphism because labels in a G-colouring must satisfy all of the same Wirtinger

relations which define π1(K) ■

Theorem 2.6. The unknot is G-colourable if and only if G is cyclic.

Proof. Assume G is cyclic. Given a diagram for the unknot, label every arc with a generator of G. This is
a consistent labelling which clearly generates G.

Suppose the unknot is G-colourable. Then there is a surjective homomorphism φ : π1(U) → G. The
fundamental group of the unknot is Z which is abelian, so the image of φ must also be abelian. Thus, by
Theorem 2.3, all arcs are labelled with the same element g ∈ G. This single element must generate G so the
group is cyclic. ■

2.3 Fox-n Colourings

The construction of G-colourings is very similar to that of mod-p colourings.

Definition 2.3. For p prime, a p-colouring of a knot K is a labelling of the arcs using the integers
{0, 1, . . . , p− 1}, subject to the crossing relation

2x− y − z ≡ 0 mod p

Where x is the label on the overstrand and y,z are the labels on the understrands.
A knot is p-colourable if it has a non-constant p-colouring.

This equation is similar to the Wirtinger relation gkg−1 = h so we may be tempted to say that a p-

colouring is a group colouring with the integers mod p, but this is not the case. Z⧸pZ is an abelian group, so by

Theorem 2.3, there are only trivial group colourings, but non-trivial mod-p colourings exist (ex. Figure 10).

To describe p-colourings as a group colouring, we need a group with additivity properties similar to Z⧸pZ
but that is non-abelian. Enter the dihedral groups.

Definition 2.4. The dihedral group Dn, describes the symmetries of a regular n-sided polygon. It has
two generators: s describing a flip and r for a 360

n

◦
rotation. The group has a presentation

Dn =
〈
r, s | rn = s2 = 1, sr = r−1s

〉
The presentation means that any g ∈ Dp can be written as either g = ri or g = sri for some i ∈
{0, 1, . . . p− 1}.

The r element generates a subgroup isomorphic to Z⧸pZ.

Theorem 2.7. Mod-p colourings are in 1-to-1 correspondence with Dp group colourings.
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Proof. Start with a p-colouring for K. Define a function φ : Z⧸pZ → Dp by φ(i) = sri and verify that this

satisfies the Wirtinger relations at each crossing.

Let x, y, and z be the overstrand and two understrand labels in Z⧸pZ. Orient the diagram such that

y is the outgoing understrand, and WLOG suppose the crossing is positive. The Dp Wirtinger relation is
satisfied if

φ(x)φ(y)φ(x)−1 = φ(z)

or equivalently
φ(x)φ(y)φ(x)−1φ(z)−1 = 1

Evaluate φ and apply the dihedral group relations (srk = r−ks, s−1 = s, etc.) to rearrange the group
elements.

φ(x)φ(y)φ(x)−1φ(z)−1 = srxsry(srx)−1(srz)−1

= srxsryr−xsr−zs

= srxsr−x+yrzss

= srxsr−x+y+z

= srxrx−y−zs

= sr2x−y−zs

The labels came from a p-colouring, so 2x− y − z ≡ 0 mod p =⇒ 2x− y − z = kp for some k ∈ Z.

sr2x−y−zs = s(rp)ks = s1ks = s2 = 1

So the Wirtinger relation is satisfied and φ(i) gives a Dp-colouring.
We require a lemma to prove the opposite direction.

Lemma 2.8. The conjugacy class of s in Dp is the elements of the form sri.

Proof. First show srk is conjugate to s for all k. Let x be a solution to 2x+ k ≡ 0 mod p which exists since
p is prime. Conjugate srk by rx.

(rx)−1srkrx = r−xsrk+x = srxrk+x = sr2x+k = srxp = s

Now show that rk is not in the class with s by conjugating it with all other elements g ∈ Dp. If g = ri, then

(ri)−1rkri = r−i+k+i = rk ̸= s

and if g = sri then
(sri)−1rksri = r−issr−kri = r−k ̸= s

■

Suppose we have a Dp-colouring for K and wish to construct a mod-p colouring. The labels must generate
Dp, so at least one label must contain the s generator. Let g = sri be this label. By Theorem 2.4, all labels are

conjugate to g, so the lemma guarantees all labels are of the form srk. Define φ̄ :
{
srk | k ∈ Z⧸pZ

}
→ Z⧸pZ

by φ̄ : srk 7→ k. This is the inverse of the φ map from earlier in the proof, so a similar argument shows that
the mod-p colouring obtained by applying φ̄ to the D5 labels satisfies the 2x− y − z ≡ 0 mod p relation.

Finally, Dp is not cyclic, so there must be at least two different labels srx and sry, so the the mod-p
labelling from φ̄ is non-constant. ■

Example. The next two figures show corresponding mod-5 and D5 colourings of the figure-8 knot.

8



4

0 31

Figure 10: A mod-5 colouring of 41.

sr4

sr1
sr0

sr3

Figure 11: A D5-colouring of 41.

We can verify that the circled crossings satisfy their respective relations.

Figure 10 2(4)− 3− 0 = 5 ≡ 0 mod 5

Figure 11 sr4sr3(sr4)−1

=sr4r−3sr−4s

=sr4−3r4ss

=sr4+4−3

=sr5 = sr0

3 An Application of Group Colourings

Section 2.3 showed that group colourings are a generalization of mod-p colourings. This closing section will
show that group colourings are indeed more powerful than their modular cousin.

The (5, 3) torus knot is shown in Figure 12.

x0

x1

x2

x3 x4

x5

x6

x7

x8

x9

Figure 12: T5,3

(0 3 1)

(1 3 4)

(1 4 2)

(0 4 1)
(0 3 4)

(0 4 2)

(0 2 1)

(0 3 2)

(2 3 4)

(1 3 2)

Figure 13: An A5-colouring of T5,3

The determinant of T5,3 is 1 (see 10124 at [2]). By Theorem 4 in §3 of [1], it is not mod-p colourable
(equivalently, notDp-colourable) for any prime p. Therefore, these simple colourings are unable to distinguish
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T5,3 from the unknot.
However, expanding beyond dihedral groups lets us analyze the structure of π1(T5,3) more freely. In

particular, Figure 13 shows a labelling of the knot by the alternating group on five letters. This group is not
cyclic, so we can distinguish T5,3 from the unknot by Theorem 2.6.

Example. We can verify the colouring at the upper-right crossing. This crossing is positive and has x0 as
the overstrand.

x−1
0 x3x0 = (0 3 1)−1(0 4 1)(0 3 1) = (1 3 0)(0 4 1)(0 3 1) = (0 3 4)(1) = x4

Conjugating the understand x3 by the overstrand gives x4, so the labelling is consistent at this crossing.

This labelling was computed by a brute-force Python script using the SymPy library [3]. A labelling for
T5,3 is completely determined by the labels on x0, x4, and x8, so the script “guesses” all possible labels
for these arcs. Theorem 2.4 is applied by limiting the 3 guesses to a single conjugacy class. This improves
execution time without missing any solutions.

The Wirtinger relations determine the remaining 7 arcs. If the labelling is non-trivial and consistent,
then the colouring is saved as a successful solution. See Appendix A for the source code.
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A Python code for A5 colouring of T5,3

Click for a live demo

# Blake Freer, 2024

# https://github.com/BlakeFreer

from itertools import product

from sympy.combinatorics import Permutation, PermutationGroup

from sympy.combinatorics.named_groups import AlternatingGroup

GROUP = AlternatingGroup(5)

def try_solve(x0, x4, x8):

x1 = (~x4) * x0 * x4

x5 = (~x8) * x4 * x8

x2 = (~x8) * x1 * x8

x9 = (~x2) * x8 * x2

x6 = (~x2) * x5 * x2

x3 = (~x6) * x2 * x6

x7 = (~x0) * x6 * x0

assert x0 == (~x6) * x9 * x6, "Inconsistent at x0"

assert x4 == (~x0) * x3 * x0, "Inconsistent at x4"

assert x8 == (~x4) * x7 * x4, "Inconsistent at x8"

solution = [x0, x1, x2, x3, x4, x5, x6, x7, x8, x9]

assert PermutationGroup(*solution).equals(GROUP), "Doesn't generate."

return solution

def solve_conj_class(conj: set[Permutation]):

solutions = []

for x0, x4, x8 in product(conj, repeat=3):

try:

solutions.append(try_solve(x0, x4, x8))

except AssertionError:

pass

return solutions

for cls in GROUP.conjugacy_classes():

solutions = solve_conj_class(cls)

print(

f"Found {len(solutions)} colourings with the conjugacy class of {list(cls)[0]}."

)

if solutions:

print("One example is:")

for idx, p in enumerate(solutions[0]):

print(f"x{idx} = {p}")
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A.1 Output

$ python t53.py

Found 0 colourings with the conjugacy class of (4).

Found 120 colourings with the conjugacy class of (2 4 3).

One example is:

x0 = (2 4 3)

x1 = (0 3 4)

x2 = (4)(0 1 3)

x3 = (4)(0 3 2)

x4 = (0 2 4)

x5 = (4)(0 1 2)

x6 = (4)(1 3 2)

x7 = (1 2 4)

x8 = (0 1 4)

x9 = (1 3 4)

Found 120 colourings with the conjugacy class of (0 4)(2 3).

One example is:

x0 = (0 4)(2 3)

x1 = (4)(0 2)(1 3)

x2 = (1 4)(2 3)

x3 = (0 1)(2 4)

x4 = (0 3)(1 4)

x5 = (0 2)(3 4)

x6 = (4)(0 3)(1 2)

x7 = (1 3)(2 4)

x8 = (0 4)(1 2)

x9 = (0 1)(3 4)

Found 120 colourings with the conjugacy class of (0 4 3 1 2).

One example is:

x0 = (0 4 3 1 2)

x1 = (0 1 3 2 4)

x2 = (0 3 4 2 1)

x3 = (0 4 1 2 3)

x4 = (0 1 4 3 2)

x5 = (0 2 1 3 4)

x6 = (0 4 2 3 1)

x7 = (0 1 2 4 3)

x8 = (0 3 2 1 4)

x9 = (0 2 3 4 1)

Found 120 colourings with the conjugacy class of (0 1 2 3 4).

One example is:

x0 = (0 1 2 3 4)

x1 = (0 4 1 3 2)

x2 = (0 3 1 2 4)

x3 = (0 4 1 3 2)

x4 = (0 2 4 3 1)

x5 = (0 4 1 3 2)

x6 = (0 2 1 4 3)

x7 = (0 4 1 3 2)

x8 = (0 1 4 2 3)

x9 = (0 4 1 3 2)
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